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simple - wave theory 

J Veldhuist and H Blok 
Laboratory of Electromagnetic Research, Department of Electrical Engineering, Delft 
University of Technology, Delft-2208, the Netherlands 

Received 8 November 1977, in final form 14 February 1978 

Abstract. A unified treatment of electromagnetic non-linear wave propagation in terms of 
simple waves in an isotropic, non-dispersive and non-linear medium is presented. Based 
on  this theory the problem of reflection and refraction of a plane wave incident on a 
semi-infinite non-linear medium is investigated systematically and solved rigorously. As a 
special case, the reflection and transmission of constant-amplitude waves is studied in 
detail. Two different methods are presented for the numerical solution of the resulting 
systems of non-linear reflection and propagation equations. A number of numerical 
results are presented. 

1. Introduction 

Recent theoretical and experimental investigations in the field of laser physics and 
non-linear transmission lines have increased the interest in the analysis of non-linear 
electromagnetic wave problems. In laser physics we mention the harmonic genera- 
tion, optical rectification, optical mixing and parametric amplification in passive, 
non-linear media (Bloembergen 1965), and the self-focusing of optical beams 
(Askar’yan 1962, Chiao er a1 1964), where the permittivity is assumed to be pro- 
portional to the time-averaged value of the square of the electric field strength. 
Research in the field of non-linear transmission lines involves the investigation of 
analogues to wave propagation in ferroelectric ceramics (see Auld et a1 1962, Scott 
1970) and the propagation of pulses in a neuristor (Reible and Scott 1975). 

One of the tools to measure the non-linear properties of a dielectric is to observe 
the reflected wave that results from an incident p-ilse. The simplest geometry in this 
regard is the plane boundary of a specimen of the material. This motivates the study of 
the non-linear reflection problem by a plane boundary. For certain classes of non- 
linear materials the pulse distortion upon reflection in the range of pulse widths that 
are used in practice, is mainly determined by the deviation from linearity, while the 
dispersion of the material is of minor importance. 

t Presently at the Philips Research Laboratories, Eindhoven, the Netherlands. 
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Mathematically the non-linear reflection problem in the presence of dispersion is 
in general almost intractable, except for perturbation methods applicable to small 
non-linearities, However, in cases where dispersion can be neglected, exact solutions 
of the non-linear wave equation can be constructed in the form of ‘simple waves’ that 
can have arbitrary large non-linearities. Therefore the application of the simple-wave 
theory to the non-linear reflection problem can yield very useful results, the more so 
since arbitrary large signal amplitudes can be taken into account. 

The simple waves are generalisations of travelling waves of constant shape in 
linear media and can be introduced with the aid of the theory of characteristics. A 
simple wave can be viewed as a wave travelling with a local velocity that depends on 
the local field value. Since different field values travel with different velocities, the 
wave changes in shape as it propagates and eventually shock-wave formation takes 
place, Simple-wave solutions of a certain class of hyperbolic systems of partial 
differential equations have been introduced by Courant and Friedrichs (1948) and 
Jeffrey and Tanuti (1964). Salinger (1923) has introduced the concept of simple 
waves in the study of non-linear transmission lines. The propagation of shock waves 
along non-linear transmission lines has been investigated by Landauer (1 960a, b) and 
Katayev (1963). Much other work on this topic has been reported in a book by Scott 
(1970). Broer (1963, 1964, 1965) has introduced the concept of simple waves in 
electromagnetics and has used it to obtain an exact solution of the reflection problem 
in non-linear optics. Simple waves of a special type, the so called ‘constant-amplitude’ 
waves, have been studied by Carroll (1967, 1972) and by Pettini (1969), in particular 
with reference to their possible use fw distortionless transmission of information 
through a non-dispersive, isotropic, non-linear dielectric. 

In the present paper, a unified treatment of electromagnetic non-linear wave 
propagation in terms of simple waves and a discussion of their properties is presented. 
The theory deals with non-dispersive, isotropic, non-linear media. A simple wave in 
such a medium is found to depend on space and time through the variable U = t - s. r 
only, in which s is the slowness vector that does not explicitly depend on either t or r. 
A special study is made of the Poynting vector, in the expression of which extra terms 
occur that are absent for plane waves in linear media. The extra terms vanish for 
constant-amplitude waves. Based on our simple-wave theory, a unified treatment of 
the reflection and refraction problem in the presence of a semi-infinite non-linear 
medium is presented. In the analysis, non-linear differential reflection and trans- 
mission factors are introduced. As a special case, the reflection and transmission of 
constant-amplitude waves by a semi-infinite non-linear medium is studied. This 
unified approach to the problem can be considered as a generalisation of previous 
work by Broer and Carroll. 

As a novel element, two different methods are presented for the numerical 
solution of the resulting systems of non-linear reflection and propagation equations. 
The first method uses an appropriate iteration scheme. In the second, a piecewise 
linear approximation to the non-linear constitutive relations is employed to solve the 
non-linear reflection equations numerically. The latter method considerably reduces 
the computing time. Various numerical results will be presented: (i) the influence of 
the degree of non-linearity on the propagation of simple waves evolving from different 
initial pulse shapes; (ii) a Fourier analysis of the transmitted simple waves for various 
non-linear profiles when a plane wave varying sinusoidally in time is normally incident 
on the half-space; (iii) the differential reflection and transmission factors for various 
angles of incidence and various non-linear profiles. 
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2. Formulation of the reflection problem 

In this section we consider the problem of reflection and transmission of a plane 
electromagnetic wave propagating in an isotropic, linear medium and incident on the 
plane boundary separating the linear medium from an isotropic, non-linear medium. 
The more general problem of reflection of a non-linear wave at the plane interface 
between two non-linear media is very complicated and can only be solved using the 
method of characteristics (see Jeffrey and Tanuti 1964). The incident plane wave 
propagates obliquely with respect to t h e  plane interface of the two media. This plane 
interface occupies the entire x, y plane at z = 0, as illustrated in figure 1. The 

Figure 1. A plane wave incident at an angle 0‘ on the plane boundary of a semi-infinite 
non-linear medium 

non-linear medium occupies the half-space 0 < z <CO. In the half-space -CO < z < 0 a 
linear, isotropic medium is present. The electromagnetic field quantities E = E(r,  t ) ,  
H = H(r ,  r ) ,  D = D(r, t )  and B = B(r, t )  satisfy in both domains the time-dependent, 
source-free electromagnetic field equations 

V x H -a,D = 0 ,  (2.1) 
V x E +&B = 0,  (2.2) 
V . D = O ,  (2.3) 

V . B = O .  (2.4) 
The electromagnetic properties of the non-dispersive, homogeneous, isotropic, non- 
linear medium in the domain O <  z < 00 are characterized by the constitutive relations 
D = D ( E )  and B = B ( H )  which are independent of the orientation of the coordinate 
axes and are therefore described by D = D ( E )  and B = B ( H )  with D = ( D .  D)l’’, 
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E = ( E .  E) ' /2 ,  B = ( B .  B)'12 and H = (H .  H)'". This allows the introduction of the 
nonlinear differential permittivity e2 = E ~ ( E )  and the non-linear differential permeability 
11.2 = 11.z(H) by 

E2(E) = aED,  N Z ( H )  = a&, (2.5) 

respectively, Since these relations hold for each of the components of the constitutive 
relations D = D ( E )  and B = B(H), these can be written as 

The electromagnetic properties of the non-dispersive, homogeneous, isotropic, linear 
medium in the domain -a < z < 0 are characterized by the relations 

D = E ~ E ,  B=p.iH. (2.7) 

The incident wave is a uniform plane wave in the half-space -a < z < 0. The reflected 
wave is assumed to be a plane wave in the half-space - a < z  <O. The transmitted 
wave in the half-space O <  z <CO is assumed to be a simple wave satisfying the 
equations (A.9) and (A.10). The three waves are of the form {E,  H}(r, t ) =  {E,  H } ( u )  
with U = t -s. r. Superscripts i, r, t will refer to the incident, reflected and transmitted 
waves, respectively. The incident and reflected waves are written as 

The transmitted wave is represented as 

E'= ~,Ht(w)xZ'{E'(w),  H'(w)} dw, I 
H' = [ Y'{E'(w), H'(w)} x a,E'(w) dw, 

in which E' = (E' . E')'/2 and H' = (H' . Ht)'l2 and U = t 
have 

S ' .  r. In (2.8) and (2.9) we 

(2.10) 

while the vectorial wave impedances and wave admittances are introduced through 

z = S I € ,  y =SIP, (2.1 1) 

see also (A.7). In the non-linear half-space (0 < z < 00) the simple wave will travel 
with a local velocity v = U@', H')= (S'. s ' ) - ~ / ~  = {E~(E ' )~~ .~ (H ' )} - ' /~ ,  the amplitude 
and direction of which depend on the local field values. While the waveshapes of the 
incident and reflected waves remain unchanged, the shape of the transmitted wave 
does change in the non-linear half-space, since in a simple wave different field values 
travel with different velocities. The relations for the transmitted wave derived thus far 
cease to hold when shock-wave formation occurs. As a consequence the region of 
existence of the simple wave in the non-linear half-space is bounded. We next 
decompose the slowness vectors si, sr and s' into their components parallel to the 
interface (&, sk and si) and their components perpendicular to the interface (i.e. the 
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z components), i.e. 
- SF.' + si , r , t ,  

2 2  
- (2.12) 

The boundary conditions at z = 0 can only be satisfied identically in x and y if 

(2.13) 

Hence the directions of propagation of the incident, reflected and transmitted waves 
at z = 0 are coplanar. From (2.13) we observe that sk will not depend on E' and H'. 
As a consequence, the dependence of S' on E' and H' will only manifest itself in si. 
This z component of S' is found from (2.10) and (2.12) as 

s: = { € * ( E 1 ) / 4 H ' ) - S k .  s k y 2 .  (2.14) 

Application of the boundary conditions at the interface z = 0 results, after some 
manipulations, in a system of four vectorial equations for the unknown vectors E', H' 
and E', H', in which E' and Hi are the known quantities. This system can in principle 
be solved, although under general conditions the result is rather cumbersome. 
However, in the following two cases the system of equations will become more 
tractable. 

(i) The electric field of the incident wave is linearly polarised and parallel to the 
boundary (E-polarisation). Following the same reasoning as in the reflection problem 
for linear media (see e.g. Stratton 1941), it is assumed that the electric field of the 
reflected and transmitted waves are also linearly polarised and perpendicular to the 
plane of incidence, This assumption does not lead to contradictions. From (2.9) it 
then follows that the magnetic field of the transmitted wave is parallel to the plane of 
incidence, however not necessarily linearly polarised. 

(ii) The magnetic field of the incident wave is linearly polarised and parallel to the 
boundary (H-polarisation). Similar remarks as made for E-polarisation will apply 
here, too. 

In the two cases we are dealing with independent solutions. It is noticed, however, 
that the problem of reflection of an arbitrarily polarised incident field cannot be solved 
by a linear superposition of an E-polarised and an H-polarised field. In both cases we 
introduce the angle Oi*'.' as the angle between the slowness vector si*'.' and the positive 
z axis respectively. The relations between the slowness vectors SI, S '  and S' and the 
angles e', 8' and 8' respectively are illustrated in figure 2. We further see that 
s: = -si, or O r =  7~ - 8'. From (2.13) it follows that sk. sk  = e l p l  sin2(8'). 

i r i  
ST = ST = ST = ST. 

I I' I 

I 
Figure 2. Plane of incidence with the slowness vectors si, sr and s'. 
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2.1. €-polarised fields 

The boundary conditions at the interface z = 0 lead to the equations 

Ex +E: =E:  at z = 0, (2.15) 

YiE; + Y:E: = Y:{E'(w), H'(w)} a,E:(w) dw at z = 0. (2.16) 

Since si will not depend on E' and H' and consequently Yy = Y,(H'). We obtain 
from (2.9) 

c 
H: = Y:{E'(w), H'(w)}  d,E:(w)dw, 

H i  = -1' Y',{H'(w)} d,E:(w)dw. 

c 
0 

(2.17) 

(2.18) 

The equations (2.15)-(2.18) constitute a system of four coupled equations for the 
unknown quantities E:, E:, H :  and H:. In (2.16), Ht=[(H:)2+(H,)  ] can be 
expressed in terms of E: by solving the implicit equations (2.17) and (2.18). Then 
using (2.15), (2.11) and (2.16) can be rewritten as 

t 2 112 

E: 

Y1 cos(8')(2E: -E:) = Y:{E, H'(E)} d E  z = 0. (2.19) 
0 

This equation is a simple integral equation from which the transmitted field E: at the 
interface can be computed. In the special case of a non-linear dielectric with F ~ ( H ' )  = 
constant we have in (2.19), Y: = Y: (E); in the special case of a non-linear magnetic 
medium with e2(E')= constant we have in (2.19), Y: = Y:(H'(E)). 

From (2.15) and (2.16) the non-linear differential reflection factor can be defined by 

dE: 
dE: 

YL - Y: (E', H ' )  
- Y: + Y: (E', H')  

at z = 0, H ' )  = - = 

and the non-linear differential transmission factor as 

dE: Y: - Y: 
p ( E t ,  H ' )  = - = at z = 0. 

dE: - Y: + Y: (E', H')  

(2.20) 

(2.21) 

From (2.20) and (2.21) we have - p E  + T €  = 1. The expressions found in (2.20) and 
(2.21) are similar in form to the corresponding Fresnel reflection and transmission 
factors of an €-polarised plane wave incident on a linear half-space. The angle of 
incidence at which p E  = pE(E', H ' )  vanishes is the Brewster angle; it can be found 
from (2.20) as 

(2.22) 

provided that the right-hand side of (2.22) is real. 

2.2. H-polarised fields 

The expressions for H-polarised fields can be obtained from the corresponding results 
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found for E-polarised fields in (2.15)-(2.22) by interchanging the quantities according 
to 

E + H ,  H + E ,  Z + - Y ,  Y + -2. (2.23) 

The Brewster angle in the case of H-polarised fields can be found as 

(2.24) 

provided that the right-hand side of (2.24) is real. When ~ . L ~ = c L ~  we observe from 
(2.22) and (2.24) that 6: does not exist, while 

0; = t a n - ' ( ~ ~ ( E ' ) / ~ ~ ) ' " .  (2.25) 

3. Generation of constant-amplitude waves in a semi-infinite non-linear half-space 

In this section we reconsider the reflection problem investigated in 0 2 .  However, the 
problem is reversed in the sense that the question now is how to choose the incident 
wave in order that a constant-amplitude wave in the non-linear medium is generated, 
then the quantities E' and H' are constants and consequently the slowness vector S' is 
also a constant vector. The velocity of propagation U ' =  l /s '  and the direction of 
propagation s^' will then depend only on the magnitude of the constant amplitude. 

In order to facilitate the analysis we write all the field quantities involved in terms of 
components perpendicular to the plane of incidence (subscript I) and parallel to the 
plane of incidence (subscript 11): 

{E,  = { E ~ ,  ~ ~ } ~ * ~ 9 ~  +{E,,, I@*~*~(P~ x ix>.  (3.1) 

I (3.2) 

* r>l. (3.3) 

Subsequently we introduce 
E i . r , t  = E1.r.t COS[4i.r.t(l - Si .r . t .  ,,)I, 

Ei.r . t  = sin[4i.r,t(, - S i . r . t  

The corresponding magnetic fields immediately follow using (A.15). From (3.2) and 
(3.3) we notice that the transmitted field will be a constant-amplitude wave only if 
E: =E;. As in 0 2, the boundary conditions at the interface can only be satisfied when 
(2.13) holds, which implies that the directions of propagation of the incident, reflected 
and transmitted waves at z = 0 are coplanar. Imposing these boundary conditions, we 
obtain a system of equations from which, E; =EL =E' being prescribed, E ; ,  E:, E;  
and E: can be solved straightforwardly. In particular we find 

. .  

and 

(3.5) 

The ratio Ea/Ef in (3.5) can be interpreted as the eccentricity of the (elliptically) 
polarised incident field. With E; =E: = E ' ,  the constant amplitude of the transmitted 
wave being prescribed, the ratio EL/E; in (3.5) indicates how to choose the eccen- 
tricity of the incident wave for a given angle of incidence. The amplitude of the 
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incident wave then follows from (3.4). In the case of normal incidence it follows 
immediately from (3.4) and (3.5) that the incident wave should also be a constant- 
amplitude wave (Ea/Ei = l) ,  that is, E' and H i  should be constant. 

4. Numerical methods 

Two different methods have been used for the numerical solution of the resulting 
systems of non-linear equations. In the first method, an appropriate iteration scheme 
is chosen for the numerical solution of (2.19). The form of this equation suggests a 
straightforward iterative scheme of the type Ei , i+ l  = i = 0, 1,  2, . . . . 
However, a careful investigation of the convergence properties reveals that (2.19) 
does not satisfy the appropriate Lipschitz condition for convergence (see Traub 1964). 
An alternative approach is then to write (2.19) in the form q(Ei )=O,  and to 
determine subsequently the roots of the latter equation using, e.g., Muller's method 
(see Traub 1964). Once E: and H' = H'(E:) at the interface z = 0 have been found, 
the field quantities of the transmitted simple wave in the non-linear medium are 
computed by a straightforward iteration scheme based on the propagation equation 

U = t -s'{E'(u), H'(u)} . r, o<z<co.  (4.1) 

So for the computation of Ei(1, t )  at a point z = 1 > 0 in the non-linear medium two 
iterations have to be performed. 

A considerable reduction in computing time can be obtained by applying a piece- 
wise linear approximation to the non-linear constitutive relations D = D ( E )  and 
B = B ( H ) .  For the sake of simplicity we restrict our discussion of this second method 
to a non-linear dielectric and normal incidence and write 

(see figure 3). Introducing the (constant) values of Y :  and 2: in the interval 

D 

ai tk-l E* 
E 

Figure 3. Piecewise linear approximation of the non-linear constitutive relation D = 

DG). 
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(Ek-1, Ek), we obtain from (2.19) for E:(O, t )  at the interface z = 0 

where k has to be determined such that the inequality Ek-l S E :  < Ek holds. The 
corresponding quantities H:(O, t )  and H i  (0, t )  are found in a similar way: 

k - 1  

H: = Y:,kE: -t C (Y:,n - Y!z,k)(En -En-1)9 

H :  = - YbE:. 

f l = l  

(4.4) 

The computational procedure now is as follows. We start with choosing a value for 
Ei(1, t )  at a point z = 1 in the non-linear medium in a certain interval (Ek-1, Ek). From 
(4.2) we then know the value of E k  and compute u k  = ( E k k 2 ) - 1 ’ 2 .  Subsequently we 
compute Tk = 1 / u k ,  being the time this amplitude constituent of the wave needs to 
travel from the interface to the point z = 1. We then calculate E:@,  t - T k )  using (4.3) 
and check whether the computed value lies in the interval ( , ! ? - I ,  Ek). If this is not the 
case, the procedure is repeated with a modified starting value for Ei(1, t ) .  Hence in 
this second method only a single iteration scheme is needed. In this iteration scheme, 
a complication may occur. Due to the now discrete character of the propagation 
velocity in the non-linear medium, different amplitude constituents of the electric field 
may drift apart in time, and time intervals occur in which the electric field is not 
defined. This process is illustrated in figure 4. We overcome this difficulty by inter- 
polating between neighbouring values. 

Ek.l 

Ek 
I - 

Ek.1 
U 

f f 

Figure 4. Two values of E: propagating with different velocities u t + ,  and uk with respect 
to each other. At z = I and t = r 3 ,  computation of E:( [ ,  t 3 )  is impossible. 

5. Numerical results and discussion 

For the configuration given in figure 1, in which the half-space --CO < z < 0 is assumed 
to be vacuum with E O  and PO and the half-space O <  z <-CO occupied by a non-linear 
dielectric with € ( E )  and po, several numerical results have been obtained. Using both 
numerical methods outlined in the previous section, the E-polarised field strength 
E:(z ,  t )  ( z  > 0 )  and E:(z ,  t )  (z < 0 )  has been calculated for various non-linear profiles 
and variously shaped pulsed waves normally incident on the boundary z = 0. Both 
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methods led to the same results, however considerable reduction in computing time 
has been obtained applying the method in which the relation between D and E is 
approximated piecewise linearly. All numerical results presented here have been 
obtained using the latter method. 

In order to illustrate the influence of the non-linearity on the reflection and 
transmission of an incident plane wave, two different non-linear profiles have been 
studied in detail, namely 

E ( E )  = E0(1+ (YE2), (5.1) 

corresponding to D ( E )  = EO[E + (a/3)E3] and being a monotonic increasing function 
with constant curvature; and 

E @ )  = E ~ [  1 + (Y sech2(E)], (5 .2 )  
corresponding to D ( E )  = E ~ [ E  + (Y tanh(E)] and being a monotonic decreasing 
function having an inflection point. Both functions are used as approximations to 
non-linearities in applied physics. For the case of a plane pulsed wave, having the 
form of the upper half of a sine, normally incident on the boundary z = 0, the 
E-polarised transmitted electrical field strength Ek(z,  t )  is plotted in figure 5 at four 

.O 5 -  

-1 o t  I I E 
0 10 2 0  

z I C ,  

l a )  

0 
z /CO 

( b )  

Figure 5. The electric field strength of the transmitted wave E:(z,  1 )  against the distance 
z / c o  (expressed in time units) at four different instants I when a pulse, having the form of 
the upper half of a sine, hits the boundary z = O  normally at t = O .  (a) € ( E ) =  
ro[l +sech2(E)]; ( b )  c(E)=co(l  + E 2 ) .  
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different instants as a function of the 'normalised' distance z / co  (the distance expres- 
sed in time units), in which co denotes the velocity of light in vacuo. We observe from 
figure 5(a) that the leading edge of the pulsed wave gradually steepens as the wave 
penetrates into the non-linear medium. This is in accordance with the fact that for the 
non-linear profile under consideration the crest of the wave travels faster than the 
trough. In figure 5(b)  the opposite situation occurs. Here the non-linearity is such 
that the crest of the wave travels slower than the trough and consequently the trailing 
edge of the pulsed wave steepens as the wave penetrates into the non-linear medium. 

Next we have taken the incident field of the form EL(0, t )  = sin(2.rrfot), i.e. simple 
harmonic with frequency fo. In figure 6 one time period of the calculated, transmitted 
field strength t) is plotted at three different locations z / cg  in the non-linear 
medium. As can be seen from these plots the transmitted field is no longer simple 
harmonic and consequently generation of higher harmonics must have taken place. 
This we have examined numerically by calculating the Fourier components &.,,(z) of 
the time periodic field strength E:(z ,  t )  with the aid of a fast Focrier transform (FFT). 
The Fourier series of E:(z ,  t )  can thus be expressed as 

Et 

-101 1 I I I I I I 1 1 

0 02 O L  0 6  0 8  

(5.3) 

0 

t 
ibi 

Figure 6. One time period of the electric field strength E:(z ,  1 )  at three different locations 
z / c o  in the non-linear medium when a sinusoidal field E:(O, t )  = sin(27rfot) is normally 
incident on the boundary z = 0. ( a )  € ( E ) =  eo[l +sech2(E)]; ( b )  a ( E ) = e o ( l  +EZ). 
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The modulus of the complex Fourier components &,,(z)  corresponding to the cases 
given in figure 6 are listed in table 1. 

Table 1. The amplitudes of the harmonics of the complex Fourier components & ( z )  
corresponding to the cases given in figure 6. Incident field: Ex(0, f)=sin(2.rrf0t). 

€ ( E ) =  cO[l +sech2(E)] 

lEi,n(z)l at location z/co 

€ ( E ) =  €o(l  + E 2 )  

lg:,n(z)l at location z / c o  

0.5 1.0 0 0.15 0.40 
n 

1 0.424 0.419 0.41 1 0.477 0.475 0.462 
3 0.0030 0,061 0.100 0,0072 0,043 0.095 
5 0~0001 0.021 0.053 0.0005 0.0095 0.045 
7 0~0000 0.0096 0.036 0.0000 0.0031 0.027 

First we notice that only odd harmonics are generated. This could be expected 
since the constitutive relations of the non-linear medium are odd functions. Substitu- 
tion of the Fourier series (5.3) in 0: =D:(E:) reveals that the only non-vanishing 
Fourier components 8 i , , ( z )  of the transmitted field generated by the incident field 
with frequency fo are odd numbered. Hence only odd multiples n of the frequency fo 
will occur in the transmitted field and consequently in the reflected field as well. 
Secondly it is observed that for n = 3 , 5 , 7 ,  , . . , 8 i , , ( z )  increases as we move further 
into the non-linear medium, while ( z )  decreases. Apparently in order to build up 
the higher harmonics of the field, energy has to be supplied by the fundamental 
harmonic of the field. For obliquely incident fields we have investigated the depen- 
dence of the reflection factors pE*" and transmission factors T ~ . "  and, if they exist, the 
Brewster angles 8:" on the magnitude E' of the incident field EZ(0, t ) .  In order to 
find pE,  T~ and p", T" as functions of the magnitude E' of the incident field at z = 0, 
one has to determine the magnitude E' of the transmitted field as a function of E' at 
z = 0 for a given angle of incidence e', both for an E-polarised and an H-polarised 
field. Subsequently E' is substituted in (2.20) and (2.21), yielding the values of pE,  T~ 

for E-polarisation and with (2.23) the values of p", T" for H-polarisation. In figures 
7 and 8 the absolute values of the reflection factors pE*" and transmission factors T~~~ 

are plotted against the magnitude E' of the incident field at z = 0 for various angles of 
incidence 8' and for two non-linear profiles, € ( E )  = eo[ 1 + Q sech2(E)] and € ( E )  = 
eo(l+aE2).  In both profiles for the strength parameter Q of the non-linearity the 
values Q = 1 and a = 2 have been taken. The magnitude E' of the incident field has 
been chosen in the range between 0 and 1 V m-l in order to make the influence of the 
non-linearity not too pronounced. To give a qualitative view of what happens beyond 
this range, particularly for the monotonically increasing profile € ( E )  = cO(l + E * ) ,  
IpE*"I and ~ T ~ * ~ I  are plotted in figure 9 for normal incidence and values of the 
magnitude of the incident field up to E'= 5 V r1-l. In order to find the Brewster 
angles 8: as a function of E' one has to apply a root-finding procedure to (2.25) since 
the value of E' is dependent on the angle of incidence 8'. In table 2 the Brewster 
angles 6: for an H-polarised field are listed for various values of the magnitude E' of 
the incident field for the non-linear profiles of € ( E )  = eo[ 1 +sech2(E)1 and € ( E )  = 
eO(l + E 2 ) .  
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Figure 7. The absolute value of the reflection and transmission factors pE, z E  and p H ,  T~ 
for E-polarisation and H-polarisation respectively against the amplitude of the incident 
wave E' for various angles of incidence 8'. ( a )  lpEl, against E', 
e ( E ) = e O [ 1  +sech2(E)]; ( b )  IpEI. against E', € ( E ) =  eO[l + 2  sech*(E)]. 

and \ p H \ ,  
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Figure 8. The absolute value of the reflection and transmission factors p E .  T~ and p H .  T~ 
for E-polarisation and H-polarisation respectively against the amplitude of the incident 
wave E' for various angles of incidence 8' .  (a) l pEl , ,  1 ~ ~ 1 ,  and \ p H \ .  1 ~ ~ 1  against E' ,  
r ( E ) = e o ( l  +E2); ( 6 )  IpEI,  1 ~ ~ 1  and lpH1, 1 ~ ~ 1  against E', e ( E ) = ~ 0 ( 1  + 2 E Z ) .  
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Figure 9. The absolute value of the reflection and transmission factors pE'H and T ~ ' ~  

against the amplitude E '  of the normally incident field up to E '  = 5 V m-'. Non-linear 
profile: E ( E ) = E ~ ( ~ + E ' ) .  ( a )  IpEl, lrEl against E'; ( b )  IpHl ,  1 ~ ~ 1  against E ' .  

Table 2. The Brewster angles for various values of the amplitude of the incident wave E' 
and two different non-linear profiles. 

c ( E ) = ~ ~ [ l  +sech*(E)] €(E)= EO(i + E') 

E' 0; (rad) 0; (rad) 

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.5 

0.953 
0.946 
0.935 
0.920 
0.902 
0.882 
0,854 

0.795 
0.820 
0.855 
0.892 
0.927 
0.959 
1,056 

6 .  

In 

Conclusions 

the present paper, a unified treatment of the reflection and refraction problem in 
the presence of a semi-infinite non-linear medium based on the theory of simple 
waves is presented. For those classes of non-linear materials where the dispersion can 
be neglected the method solves the relevant problem for arbitrary large non-lineari- 
ties and arbitrary large signal amplitudes. In the analysis non-linear differential 
reflection and transmission factors are introduced. Two different methods are 
presented for the numerical solution of the resulting systems of non-linear reflection 
and propagating equations. Most of the numerical results have been obtained apply- 
ing a piecewise linear approximation to the non-linear constitutive relations, since this 
method reduces the computing time considerably. With this approach the reflection 
and transmission of a plane wave obliquely incident on a dispersionless, non-linear 
half-space with single-valued non-linear constitutive relations can be computed. 
Unfortunately, this approach cannot be extended to the interesting case of a non- 
linear slab, since then the field representation in the slab cannot be expressed in terms 
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of simple waves. We have solved the problem of the non-linear slab by means of an 
integral-equation method in the space-time domain. Results will be reported 
separately. 
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Appendix. The theory of simple waves in a non-dispersive non-linear medium 

Simple waves in a source-free domain with a non-dispersive, isotropic, non-linear 
medium are introduced as those special solutions of the field equations (2.1)-(2.4) 
together with the constitutive equations (2.5) and (2.6) (the subscript ‘2’ in € 2  and p2 is 
omitted in this appendix) for which the field quantities only depend on the space and 
time coordinates through 

u = t -s. r, (‘4.1) 
in which the slowness s = (s. s)*’* has to be determined. For a simple wave we can 
write 

{E, H, D, W r ,  t )  = {E, H, D, N u ) .  ( A 4  
In figure 10 the mapping of (r, t )  onto U for a given value of s is illustrated. From this 
illustration it follows that the operators V and 13, map as 

v + -sa,, a, + a,. (A.3) 

Figure 10. Illustration of the simple-wave field mapping. 

With (A.3), the equations (2.1)-(2.6) are written as 

--s x a,H - E ( E )  a , ~  = 0, 

--s x a,E + p ( H )  a,H = 0, 

-s. € ( E )  d,E = 0. 

-s .p ( H )  a,H = 0. 
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After elimination of either a,H or d,E from (A.4) and (A.5) we obtain for the 
slowness the condition 

s = ( s .  S ) l ' *  = ( E ( E ) p ( H ) ) 1 / 2 .  (A.6) 

By analogy with the theory of linear waves we introduce the vectorial wave impedance 
Z and the vectorial wave admittance Y defined by 

z = S/E(E) ,  Y = s / p ( H ) .  ('4.7) 

Z = Z(E ,  H )  = 1 /  Y ( E ,  H )  = ( p ( H ) / e ( E ) ) l / * ,  (A.8) 

From (A.6) it follows that 

while Z .  Y = 1. With (A.7) and (A.8) the equations (A.4) and (AS)  can be rewritten 
as 

a , ~  = a,H x z, Z .  d,E = 0 ,  ('4.9) 

a,H = Y x &E, Y .  a,H = 0.  (A.lO) 

The power flow carried by a simple wave is described by its Poynting vector S ( u ) =  
E ( u ) x  H ( u ) .  When we = we(u) and w ,  = w,(u) denote the instantaneous values of 
the electric and the magnetic energy densities respectively, it follows that with (A.4) 
and (A.5) for 13,s can be found: 

a,S = U(E,  H)(auWm+auWe)s*(E, H ) - E - ' ( E ) ( H .  s ) a , H - p - ' ( ~ ) ( E .  s ) ~ , E .  ( ~ . i i )  

Hence the instantaneous, local value of 8,s possesses a component along the slowness 
vector s as well as a component perpendicular to it. In (A. l l ) ,  u(E, H )  = l / s ( E ,  H )  
denotes the local value of the velocity of the simple wave and ŝ  = $(E, H) denotes the 
unit vector in the direction of s. For the special case when s has a constant direction, 
we observe from (A.4) and (AS)  that s*. E and s*. H are independent of U and as a 
consequence 

s . E = O ,  s . H = O .  (A. 12) 

With the aid of (A.12) we obtain after integration of (A.11) 

(A. 13) 

The first term on the right-hand side of (A.13) indicates that a simple wave behaves 
like a plane wave in a linear medium with a local velocity U = v(E,  H ) .  The second 
term shows its difference in behaviour from a linear wave due to the fact that the wave 
velocity depends on E and H. 

A special situation occurs when the simple waves under consideration have a 
constant amplitude. The so called constant-amplitude waues have been investigated 
for the first time by Carroll (1967, 1972) and by Pettini (1969). For a constant- 
amplitude wave we have E = ( E .  = constant, H = ( H .  H) l j2  = constant. It then 
follows that s is a constant vector. As a consequence Z and Y also become constant 
vectors and the equations (A.9) and (A.lO) change into 

E = H x Z ,  Z . E = O  

H = Y x E ,  Y . H = O .  

(A.14) 

(A.15) 
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W e  further find that now E .  H = 0. For chosen values of E and H, the medium 
behaves as if it were linear. With 

(A.16) W e = $ E ( ~ ) ~  2 = w , = t p ( ~ ) ~ 2 ,  
we have for the Poynting vector 

S = E x  H = u(E, H)(w,+ w,)S: (A.17) 

Equations (A.14)-(A.15) are similar to those for travelling plane waves in a linear, 
isotropic medium. We  observe that a constant-amplitude wave allows for distortion- 
less transmission of information through a non-dispersive, isotropic, non-linear 
medium. 
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